Attributing development impact: lessons from action research with the Qualitative Impact Protocol (QuIP)

Vienna Evaluation Network, May 7, 2020

James Copestake, University of Bath

How do we know whether public interventions are achieving their intended purpose? Impact assessment is a necessary condition for evidence based action but evaluators struggle to do it effectively, particularly in complex and fast changing contexts. This seminar will explore this tension in relation to international development practice by reflecting on action research designing and using a qualitative impact protocol - the 'QuIP' – which aims to be flexible, credible and cost-effective. Drawing on examples of its use from Mexico to India via Mozambique and the UK the presenter will explore ways of addressing confirmation bias, cherry picking, qualitative data analysis and re-docking problems. The seminar draws on "Attributing Development Impact", available as a free e-book at bit.ly/QuIP-OA.

Outline

1. Motivation – the challenge addressed

Even with effective change monitoring, how can social investors credibly assess their contribution to observed outcomes, particularly in complex contexts?

i.e. with less

Enabling intended beneficiaries to Extractive data collection voice their views in an **ethical** way

Reflecting the **diversity** of their Over-simplification experiences

Making **cost-effective** investments in finding out more

Obsessive measurement disorder

Additional research questions

How do social investors construct and adapt causal models of change in complex contexts?

What role can formal evaluation play in evidence-based *political deliberation* over these models?

How is impact evaluation delegitimized?

	Validity or credibility	Usefulness
Change/results monitoring	Key variables can't be measured (immeasurable)	The cost of measuring key variables is too high (imprudent)
Theory based causal claims	Insufficient contextual data (incomplete)	Misdirected, untimely, insufficiently precise (irrelevant)

Adapted from Molecke & Pinkse (2017) Accountability for social impact: a bricolage perspective on impact measurement in social enterprises. Journal of Business Venturing.

2. Context

Multiple and contested impact evaluation options

Rely on	Issues
Operational data and performance management	Mostly change monitoring, not impact Cognitive biases, vested interests & mission drift Weak external credibility
Variance based impact assessment (observational or experimental, including RCTs)	Costly and indivisible Can be extractive (survey slavery) Narrowly framed (spurious precision, OMD) What works (on average) but not how
Qualitative social research	Akerlof's lemon problem (lack of transparency) Credibility and cost-effectiveness trade-offs
Participatory learning and action	Limited generalisability Limited credibility to non-participants

What a QuIP does <u>not</u> provide

Does not provide	Responses	
Estimates of the <u>magnitude</u> of average treatment effects	Use as one input into microsimulation Run alongside a quantitative impact evaluation	
Statistically representative frequency counts	Reveals scope and range of responses Combine with Bayesian updating Use alongside quantitative surveys.	
Objective 'facts'	Perceptions matter! Incorporate with other approaches	
Recommendations for action	Combine with process evaluation Address in follow-up stakeholder engagement.	

C CON

110

110

3. The research process

Design and pilot testing (2012-15)

Grant funded collaborative action research to design and test a qualitative approach to impact assessment – tested in Malawi and Ethiopia.

Commercial testing (2016-)

Set up Bath SDR Ltd as a social enterprise to deliver QuIPs in a wider range of contexts. 40+ commissioned QuIP evaluations in 20 countries.

Continued action research (2016-)

Ongoing learning and publication on how to do impact evaluation better, including "Attributing Development Impact: The QuIP case book" (2019) - **bit.ly/QuIP-OA**

ATTRIBUTING DEVELOPMENT MPACT

nes Copestake. Marlies Morsink & Fiona Remnant

BSDR QuIP studies 2016-2019

Activities

Child nutrition Climate change adaptation Community mobilisation Early famine response Factory working conditions Housing improvement Medical & midwife training Microfinance Rural livelihoods Value chain improvement Sexual & reproductive health rights Organisational development

Countries

Bolivia Burkina Faso Cameroon Ethiopia Ghana Kenya India Indonesia

Bath

Commissioners

Acumen Bristol City Council C&A Foundation Diageo Self Help Africa Habitat for Humanity Oxfam Save the Children Seed Global Health Tearfund Tree Aid Rutgers Int'l Itad Concern Worldwide Aga Khan Foundation MannionDaniels Send a Cow Oxford Policy Mgt Power to Change Opportunity Int'l AgDevCo

An overview of the QuIP

If you haven't done so already then please click <u>here</u>

and listen to the short video

10

Features of the QuIP

Self-reported attribution (with latent counterfactuals) <u>Not</u> statistically inferred attribution based on exposure variation.

Eclectic (contribution analysis, goal-free evaluation, outcome harvesting, most significant change, process tracing, realist evaluation...)

Dual purpose: Exploratory (theory building) <u>and</u> Confirmatory (theory testing).

Bayesian in spirit – augmenting prior theory incrementally; never starting with zero understanding.

More features of QuIP

Designed for **complex contexts** (including presence of multiple causal drivers, measurement problems, rapid change and possible unintended consequences).

Focuses on making **qualitative data analysis** structured, transparent, accessible and useable

Uses **data visualisation – causal maps -** to make reported outcomes more digestible

Good enough – balancing credibility and costeffectiveness; not aiming for absolute or universal truth.

Combining QuIP with other methods

Supplementing operational data and observation, and process monitoring.

Substituting for other impact evaluation approaches. **Integrating** QuIP with other methods (see below)

Before - For exploratory analysis, scoping and identifying variables for quantitative studies.

After - To confirm of deepen understanding of impact claims based on quantitative studies

Alongside – To identify <u>mechanisms</u> to explain correlations, instead of relying on theory or speculation.

As an **input** into quantitative analysis (e.g. to inform modelling and simulation).

4. Key methodological issues

Issue	Problem	Solutions
Self-reported attribution	Confirmation bias	Double blindfolding
From field data to synthesis	Opaque data analysis	Thematic (inductive) and attribution (deductive) coding. Dashboard visualisation and cross- referencing numerical & text data.
Robust generalization	Cherry picking of cases and sources	Transparent case selection informed by large 'n' data on context, outcomes (ideally) and prior theory of change.
Effective data use	The re-docking problem	Clarity with the commissioner at the planning stage over scope for deliberation

Blindfolding

"Well, lemme think. ... You've stumped me, son. Most folks only wanna know how to go the other way."

Why do it? To reduce pro-project, framing and confirmation biases To give equal weight to all possible drivers of change Is it ethical? Informed consent Time-bound Greater good (should be proportionate) How far to go? A design choice – never zero nor 100% Only one way of reducing bias Can be temporary Can be combined with other sources Exploratory analysis can also be blindfolded.

Thematic coding and visualization

Extract from a QuIP study for Save the Children of an integrated rural development programme in Mozambique

Evidence selection – definitions and principles

Saturation – Maximize potential to learn about the fullest possible range of drivers of change affecting the selected population (Exploratory) Bayesian updating - Maximize the potential to test prior theory (Confirmatory) **Heterogeneity and differential impact** - Capture the most important sources of variation (see below). Equating marginal benefits and **costs** – Invest in more data until the extra evidence does not justify the

extra cost.

- Random selection is NOT necessarily best, indeed is unlikely to be.
- Doing all data at the same time is NOT necessarily optimal.
- There is no scientifically optimal sample size, but transparent and reasoned case selection is important to rebuff criticisms of 'cherrypicking'.

Evidence selection options (Linked to availability of prior data)

Option	Treatment	Outcome	Contextual	Comment
A	No	No	No	Random selection across full population is the only option
В	Yes	No	No	Select randomly from quota samples across categories of treatment or exposure
С	No	Yes	No	Select purposively to include positive and negative deviants
D1	No	No	Yes	Select purposively to reflect important dimensions of variation across the population (e.g. gender, age)
D2	No	No	Yes	Select purposively to include likely positive and negative deviants according to prior theory.
E	No	Yes	Yes	Select purposively to include anomalous cases poorly explained by prior theory linking Z and Y.

Case selection – illustration

(Two cluster source data selection scenarios for a uniform X)

The redocking problem

Work back from use

To stimulate internal learning (and consultation with a wider diversity of stakeholders)

To influence operational decisions (e.g. mid-project reviews and adjustment, scaling up, closing or adapting activities)

To support wider deliberation over core theories of change

For external reporting (with need for sufficient credibility to match potential push back)

via outputs

A written **report** of findings

An interactive dashboard

Integration with other sources of evidence

Participatory sense-making events

Media based wider dissemination

The key to re-docking – initial framing

What next? Evaluating complex problems

- 1. Elaborate the intervention theory of change
- 2. Monitor changes in key outcome indicators and their possible causal drivers across the population (large 'n' or wide-but-shallow data).
- 3. Ask key informants to identify credible causal mechanisms between observed changes (**small 'n'** or narrow-but-deep data).
- 4. Collect addition specific evidence to adjust these prior causal claims.
- 5. Iterate between these steps until a threshold of sufficiently credible evidence is achieved (or we run out of time and money).

e.g. The example of fire detection

Pooled commissioning to address the silo problem

Bath SDR: QuIP theory of change

